Late-Life Exercise Can Slow Effects of Aging
NEW YORK (Dispatches) -- According to a new research, exercise, even if not adopted until later in life, can slow the effects of aging.
The study by University of Arkansas scientists, “Late-life exercise mitigates skeletal muscle epigenetic aging,” suggests this could be the case. The paper was written by a team of seven researchers across three institutions, including Kevin Murach, an assistant professor in the Department of Health, Human Performance and Recreation at the U of A. Murach’s grant from the National Institute of Health funded the study, and he was one of three co-first authors.
The science behind this, while complicated, hinges largely on a biological process known as DNA methylation. A recent New York Times article discussing Murach’s work on muscle memory described methylation “as a process in which clusters of atoms, called methyl groups, attach themselves to the outside of genes like minuscule barnacles, making the genes more or less likely to turn on and produce particular proteins.”
As the body ages, there tends to be increased DNA methylation, or even hypermethylation, at promoter sites on genes in muscle. “DNA methylation changes in a lifespan tend to happen in a somewhat systematic fashion,” Murach explained, “to the point you can look at someone’s DNA from a given tissue sample and with a fair degree of accuracy predict their chronological age.” Due to this, researchers can use one of a number of “methylation clocks” to determine the age of a DNA sample.